RESONANCES FOR AXIOM A FLOWS

D. RUELLE

Abstract

Given an Axiom A flow on M and smooth functions $B,C:M\mapsto R$, we show that the time correlation function ρ_{BC} for a Gibbs state ρ has a Fourier transform $\hat{\rho}_{BC}$ meromorphic in a strip. This complements a result by Pollicott [7]. The residues of the poles of $\hat{\rho}_{BC}$ are investigated. In the simplest case, they have the form $\sigma^-(B)\sigma^+(C)$ where σ^-, σ^+ are Gibbs distributions, i.e., (Schwartz) distributions on M further specified in the paper. This is a companion to an earlier paper [9] where similar results have been obtained for Axiom A diffeomorphism.

0. Introduction

In an earlier paper [9] we have studied the time correlation functions for Axiom A diffeomorphisms. These correlation functions have Fourier transforms which are meromorphic in a strip, and we have identified the residues of the poles in that strip in terms of *Gibbs distributions*. In the present paper we obtain a similar result for Axiom A flows.

Let (f^t) be a $C^{1+\varepsilon}$ Axiom A flow on a compact manifold M (which we may take as C^{∞}). We assume that ρ is a Gibbs measure on a nontrivial basic set Λ (see Bowen and Ruelle [4]) and let **B**, **C** be smooth real functions on M. Define the correlation function

$$\rho_{\mathbf{BC}}(t) = \int \rho(dx) \mathbf{B}(f'x) \mathbf{C}(x) - \left[\int \rho(dx) \mathbf{B}(x) \right] \left[\int \rho(dx) \mathbf{C}(x) \right]$$

and its Fourier transform

$$\hat{\mathbf{p}}_{\mathbf{BC}}(\omega) = \int_{-\infty}^{\infty} e^{i\omega t} \mathbf{p}_{\mathbf{BC}}(t) dt$$

Received December 30, 1985 and, in revised form, April 4, 1986.

¹ The basic set Λ is nontrivial if it is not a fixed point or a periodic orbit.

(called the *power spectrum* if $\mathbf{B} = \mathbf{C}$). Completing an argument of Pollicott [7] we shall show that the function $\hat{\rho}_{\mathbf{BC}}$ is meromorphic in a strip $|\mathrm{Im}\,\omega| < \delta^*$ (see Theorem 4.1). The poles of $\hat{\rho}_{\mathbf{BC}}$ are called *resonances*, and we shall study their residues. For simplicity we shall consider only simple poles and make a further nondegeneracy assumption which is generically satisfied. Under these conditions, the residues are of the form $\sigma^-(B)\sigma^+(C)$, where σ^- and σ^+ are Gibbs distributions (see Theorem 4.2). The Gibbs distributions are distributions in the sense of Schwartz on M, which will be further specified below.

We refer the reader to Smale [10] and Bowen [1] for a general discussion of Axiom A flows and their basic sets. For the purposes of the present paper we shall essentially use the existence of *symbolic dynamics* as proved by Bowen [2]. Roughly speaking, symbolic dynamics is obtained by placing in the manifold M a certain number of pieces of hypersurfaces Σ_j transversal to the flow; a point x of a basic set $\Lambda \subset M$ is then specified by the sequence of intersections of its orbit $(f^t x)$ with the Σ_j .

In the next sections we describe the formal structure of symbolic dynamics (insofar as is needed). This structure is given by the construction of a space $\Omega^{\#}$, with a flow (τ_{Θ}^{t}) , and a map $\overline{\omega}: \Omega^{\#} \to M$ such that $\overline{\omega}\Omega^{\#}$ is a basic set Λ for the flow (f^{t}) and $\overline{\omega}\tau_{\Theta}^{t} = f^{t}\overline{\omega}$.

1. Symbolic dynamics: the shift τ

Let J be a nonempty finite set, and (t_{ij}) a square matrix indexed by $J \times J$, with elements 0 or 1. (The elements j of J correspond to the indices of the pieces of hypersurfaces Σ_j mentioned in the introduction; $t_{ij} = 1$ if an orbit (f'x) may successively cross Σ_i and Σ_j .) We define Ω to be the space of sequences $(j_k)_{k \in \mathbb{Z}}$ of elements of J such that $t_{j_k j_{k+1}} = 1$ for all k. The space Ω is compact with respect to the topology of pointwise convergence. The shift $\tau: \Omega \mapsto \Omega$ is defined by $(\tau \xi)_k = \xi_{k+1}$; τ is a homeomorphism. The pair (Ω, τ) is called a subshift of finite type. We assume that all matrix elements of t^N are > 0 for sufficiently large N. (This means that τ is topologically mixing on Ω , which can always be achieved in the present situation.)

Given $X \subset \mathbb{Z}$ and $\xi \in \Omega$, we let $\pi_X \xi = (\xi_j)_{j \in X}$ be the sequence obtained by restriction of the index set \mathbb{Z} to X. We also write $\pi_X \Omega = \Omega_X$.

If
$$A \in \mathscr{C}(\Omega, \mathbb{C})$$
 we define
$$\|A\|_{\infty} = \max\{|A(\xi)| : \xi \in \Omega\},$$

$$\operatorname{var}_n A = \sup\{|A(\xi)| - A(\xi')| : \xi_k = \xi'_k \text{ for } |k| < n\},$$

$$\|A\|_{\theta} = \sup_{n \ge 1} \theta^{-n} \operatorname{var}_n A, \text{ where } 0 < \theta < 1,$$

$$\|A\|_{\theta} = \|A\|_{\infty} + \|A\|_{\theta}.$$

We let \mathscr{C}_{θ} be the Banach space of those A for which $\lim_{n\to\infty} \theta^{-n} \operatorname{var}_n A = 0$, with the norm $\|\|\cdot\|\|_{\theta}$. Note that \mathscr{C}_{θ} is a Banach algebra (i.e. $\|\|AB\|\|_{\theta} \le \|\|A\|\|_{\theta}\|\|B\|\|_{\theta}$). If $X \subset \mathbb{Z}$, we let

$$\mathscr{C}_{\theta}(X) = \{ A \in \mathscr{C}(\Omega_X, \mathbb{C}) : A \circ \pi_X \in \mathscr{C}_{\theta} \}.$$

This is a Banach space with respect to the induced norm $A \mapsto |||A \circ \pi_x|||_{\theta}$. We denote by \mathscr{C}_{θ}^* , $\mathscr{C}_{\theta}(X)^*$ the duals of \mathscr{C}_{θ} , $\mathscr{C}_{\theta}(X)$. For $\sigma \in \mathscr{C}_{\theta}^*$ or $\mathscr{C}_{\theta}(X)^*$ it will be convenient to write

$$\sigma(A) = \int \sigma(d\xi)A(x)$$

as if σ were a measure.

The pressure of $A \in \mathscr{C}(\Omega, \mathbb{R})$ is

$$P(A) = \max\{h(\sigma) + \sigma(A) : \sigma \text{ is a } \tau \text{-invariant probability measure}\},$$

where $h(\sigma)$ is the *entropy* of σ (= Kolmogorov-Sinai invariant). If $A \in \mathscr{C}_{\theta}$, the maximum is reached for a unique measure ρ called the *Gibbs state* for A. The theory of Gibbs states is discussed in Bowen [3] and Ruelle [8]. In [9] an extension to *Gibbs distributions* is given (these are elements of \mathscr{C}_{θ}^* , not necessarily measures). We shall quote results from the above references as needed. Here we reproduce some definitions of [9] with slightly different notation.²

If $A_{\#} \in \mathscr{C}_{\theta^2}$, we may introduce an *interaction* Φ such that

(1.1)
$$A_{\#}(\xi) = A_{\Phi}(\xi) \equiv -\Phi_0(\xi_0) - \sum_{n=1}^{\infty} \Phi_{2n}(\xi_{-n}, \dots, \xi_n),$$

where $|\Phi_{2n}| < \text{const } \theta^{2n}$ (we write $\Phi_k = 0$ if k is odd). We then define $A'_{\Phi} \in \mathscr{C}_{\theta}((-\infty, 0])$ by

(1.2)
$$A'_{\Phi}(\xi') = -\sum_{k=0}^{\infty} \Phi_k(\xi'_{-k}, \dots, \xi'_0).$$

Finally we let \mathscr{L}'_{Φ} be the operator on $\mathscr{C}_{\theta}((-\infty, 0])$ such that

(1.3)
$$\left(\mathscr{L}_{\Phi}' \phi \right) \left(\xi' \right) = \sum_{\eta \in J} t_{\xi_0 \eta} \left[\exp A'_{\Phi} \left(\tau \xi' \vee \eta \right) \right] \phi \left(\tau \xi' \vee \eta \right),$$

where $\tau \xi' \vee \eta = (\cdots, \xi'_{-1}, \xi'_{0}, \eta) \in \Omega_{(-\infty, 0]}$ when $t_{\xi_{0}\eta} = 1$ (otherwise $\tau \xi' \vee \eta$ is undefined). The adjoint $\mathscr{L}_{\Phi}^{\prime*}$ acts on $\mathscr{C}_{\theta}((-\infty, 0])^{*}$.

The spectrum of \mathscr{L}'_{Φ} and \mathscr{L}'^*_{Φ} is contained in the disk $\{z:|z| \leq \exp P(\operatorname{Re} A_{\#})\}$, and the part in $\{z:|z| > \theta \exp P(\operatorname{Re} A_{\#})\}$ is discrete, consisting of eigenvalues of finite multiplicity.

² In particular, it is convenient to write $A_{\#}$ instead of A for purpose of later reference.

If $A_{\#}$ is real, $\exp P(A_{\#})$ is a simple eigenvalue of \mathscr{L}'_{Φ} and \mathscr{L}'^{*}_{Φ} , and there is no other eigenvalue with the same modulus. Let S' and σ' be the eigenvectors of \mathscr{L}'_{Φ} and \mathscr{L}'^{*}_{Φ} corresponding to $\exp P(A_{\#})$. Then $S'\sigma'$ is (up to normalization) the image by $\pi_{(-\infty, 0]}$ of the Gibbs state ρ .

For $A_{\#}$ not necessarily real, let λ , μ be any eigenvalues of \mathscr{L}'_{Φ} and \mathscr{L}'_{Φ}^{*} with modulus $> \theta \exp P(\operatorname{Re} A_{\#})$, and let S'_{λ} , σ'_{μ} be in the corresponding generalized eigenspaces of \mathscr{L}'_{Φ} , \mathscr{L}'_{Φ}^{*} . Then the Gibbs distributions on Ω have images by $\pi_{(-\infty, 0]}$ of the form $S'_{\mu}\sigma'_{\lambda}$ or linear combinations of such products (a precise description is given in [9]).

Let us write

(1.4)

$$d(ze^{A_{\#}}) = \exp \left[-\sum_{n=1}^{\infty} \frac{z^{n}}{n} \sum_{\xi: \tau^{n} \xi = \xi} \exp \left(A_{\#}(\xi) + A_{\#}(\tau \xi) + \cdots + A_{\#}(\tau^{n-1} \xi) \right) \right].$$

Then this series converges when $|z|\bar{\theta}\exp P(\operatorname{Re}A_{\#}) < 1$, with $\bar{\theta} < 1$ as in [9]. In this region, the zeros of $z \mapsto d(ze^{A_{\#}})$ coincide with the inverses λ^{-1} of the eigenvalues of \mathscr{L}_{Φ} , and have the same multiplicity.

2. Symbolic dynamics: the flow (τ_{Θ}^t)

Consider the compact set $\Omega \times [0,1]$ and identify $(\xi,1)$ with $(\tau \xi,0)$; we obtain a compact space $\Omega^{\#}$. Let $(\xi,u) \mapsto A(\xi,u)$ be a continuous function $\Omega^{\#} \mapsto \mathbb{C}$ such that $A(\cdot,u) \in \mathscr{C}_{\theta}$ and $u \to A(\cdot,u)$ is continuous from [0,1] to \mathscr{C}_{θ} . We call $\mathscr{C}_{\theta}^{\#}$ the Banach space of such functions with norm

(2.1)
$$|||A|||_{\theta}^{\#} = \max_{u} |||A(\cdot, u)|||_{\theta}.$$

We denote by $\mathscr{C}_{\theta}^{\#*}$ the dual of this space.

Let Θ be a real continuous and strictly positive function on $\Omega^{\#}$. The suspended flow with speed function Θ^{-1} is the flow (τ_{Θ}^{t}) defined on $\Omega^{\#}$ by

$$\tau_{\Theta}^{t}(\xi, u) = (\xi, u(t)), \qquad \frac{du(t)}{dt} = \frac{1}{\Theta(\xi, u)}$$

with appropriate identifications when u(t)=0 or 1. This flow is mixing if there is no $A\in\mathscr{C}_{\mathbb{C}}(\Omega^{\#})$ satisfying $A\circ\tau_{\Theta}^{t}=e^{i\alpha t}A$ with $A\neq 0$, $\alpha>0$, and (τ_{Θ}^{t}) is nonmixing if and only if it is isomorphic to a flow with *constant* speed

function.³ The correspondence between Ω and $\Omega^{\#}$ extends to invariant (probability) measures, and to functions, as follows:

$$\begin{array}{ccccc}
\Omega^{\#} \supset (\tau_{\Theta}^{i}) & \sigma^{\#} & \sigma^{x} & A \\
\downarrow & & \downarrow & & \downarrow \\
\Omega \supset \tau & \sigma & A_{\#}
\end{array}$$

(see formulas (2.2), (2.3), and (2.6) which follow).

If σ is a τ -invariant measure on Ω , a (τ_{Θ}^t) -invariant measure $\sigma^{\#}$ on $\Omega^{\#}$ is defined by

(2.2)
$$\sigma^{\#}(d\xi du) = \sigma(d\xi)\Theta(\xi, u) du,$$

where du denotes Lebesgue measure. If σ is a τ -invariant probability measure, then a (τ_{Θ}^{t}) -invariant probability measure σ^{\times} is given by

(2.3)
$$\sigma^{\times} = \sigma^{\#} \left(\int \sigma(d\xi) r(\xi) \right)^{-1},$$

where we have written

(2.4)
$$r(\xi) = \int \Theta(\xi, u) du.$$

The map $\sigma \mapsto \sigma^{\times}$ is a bijection of the τ -invariant probability measures on Ω to the (τ_{Θ}^{t}) -invariant probability measures on $\Omega^{\#}$. The entropy $h_{\Theta}(\sigma^{\times})$ with respect to (τ_{Θ}^{t}) is given by Abramov's formula:

$$h_{\Theta}(\sigma^{\times}) = h(\sigma) \left(\int \sigma(d\xi) r(\xi) \right)^{-1}.$$

The pressure of $A \in \mathscr{C}(\Omega^{\#}, \mathbb{R})$ is defined by

(2.5)
$$P^{\#}(A) = \max\{h_{\Theta}(\sigma^{\times}) + \sigma^{\times}(A) : \sigma^{\times} \text{ is a } (\tau_{\Theta}^{\prime}) \text{-invariant probability measure}\}.$$

Write

(2.6)
$$A_{\#}(\xi) = \int_{0}^{1} A(\xi, u) \Theta(\xi, u) du.$$

Then $A_{\#} \in \mathscr{C}(\Omega, \mathbb{R})$. (Note that $1_{\#} = r$ by (2.4).) If $A \in \mathscr{C}_{\theta}^{\#}$, there is a unique measure ρ^{\times} realizing the maximum in (2.5). This is called the *Gibbs state* for A. In fact ρ^{\times} corresponds by (2.2), (2.3) to the τ -invariant probability measure ρ on Ω which is the Gibbs state for $A_{\#} - P^{\#}(A)r$. Furthermore $P(A_{\#} - P^{\#}(A)r) = 0$ and this equation determines $P^{\#}(A)$ (see Bowen and Ruelle [4]).

³ For a precise statement see [1].

Let us return to the original Axiom A flow (f') on the manifold M. The connection between the flow (τ_0^l) on $\Omega^{\#}$ and (f') restricted to a basic set Λ of M is by a map $\overline{\omega}: \Omega^{\#} \to \Lambda$ (see Bowen [2]). The map $\overline{\omega}$ sends $(\xi,0)$ to a point x_{ξ} of the hypersurface Σ_{ξ_0} such that its orbit successively intersects all Σ_{ξ_k} in the order given by the components ξ_k of ξ . The point $(\xi,u)=\tau_0^l(\xi,0)$ goes to $f'x_{\xi}$. Using $\overline{\omega}$ one can send functions on Λ to functions on $\Omega^{\#}$ and measures on $\Omega^{\#}$ to measures on Λ . In this manner, the study of correlation functions for the Axiom A flow (f') translates into the study of correlation functions for the suspended flow (τ_0^l) . This approach, called *symbolic dynamics*, has the disadvantage of a certain arbitrariness (the choice of $\Omega^{\#}$, (τ_0^l) , $\overline{\omega}$ is nonunique) but we shall not further consider the question. (For Axiom A diffeomorphisms, the problem has been discussed in [9], and one could repeat the same remarks here, *mutatis mutandis*.)

Note that the positive function r on Ω defined by (2.4) expresses the time between crossing Σ_{ξ_0} and the next hypersurface Σ_{ξ_1} in terms of the symbol sequence. By suitably choosing the hypersurfaces Σ_i (they should be unions of unstable manifolds) one can assume that $r(\xi)$ depends only on the components ξ_k of ξ with $k \leq 1$.

We thus have

$$(2.7) r \circ \tau^{-1} = \tilde{r} \circ \pi_{(-\infty,0]},$$

where \tilde{r} is a function on $\Omega_{(-\infty,0]}$ and $\pi_{(-\infty,0]}:\Omega\to\Omega_{(-\infty,0]}$ has been defined in §1. From the general theory of Axiom A flows (see Bowen [2], Bowen and Ruelle [4]), it follows that the time between crossings of the hypersurfaces Σ_i is a Hölder continuous function and, as a consequence, that \tilde{r} belongs to $\mathscr{C}_{\theta}((-\infty,0])$ for suitable θ . Similarly, if A is a smooth function on the manifold M, and we define $A=A\circ\overline{\omega}$ and $A_{\#}$ by (2.6) we find $A_{\#}\in\mathscr{C}_{\theta^2}$ for suitable θ (for technical reasons we want θ^2 here rather than θ).

From now on we shall work with the symbolic dynamics, remembering from the differentiable setup only that $A, \Theta \in \mathscr{C}_{\theta^2}^{\#}$, so that

$$\tilde{r} \in \mathscr{C}_{\theta}((-\infty,0]), \qquad A_{\#} \in \mathscr{C}_{\theta^2}$$

follow from (2.4), (2.6).

Remember that an interaction Φ has been associated with $A_{\#}$ by (1.1). It is convenient to introduce also an interaction Ψ , associated with the function \tilde{r} defined by (2.7), such that

(2.8)
$$\tilde{r}(\xi') = -\Psi_0(\xi'_0) - \sum_{k=1}^{\infty} \Psi_k(\xi'_{-k}, \dots, \xi'_0)$$

and $|\Psi_k| < \text{const } \theta^k$. Note that with the notation of (1.1) we have $\tilde{r} = A'_{\Psi}$.

For real $A \in \mathscr{C}_{\theta^2}^{\#}$, a zeta function is defined by

(2.9)
$$\zeta_{A}(s) = \prod_{\gamma} \left[1 - \exp \int_{0}^{\ell(\gamma)} \left(A(\tau_{\Theta}^{t} x_{\gamma}) - s \right) dt \right]^{-1}$$

$$= \exp \sum_{n=1}^{\infty} \frac{1}{n} \sum_{\xi : \tau^{n} \xi = \xi} \exp \sum_{k=0}^{n-1} \left[A_{\#}(\tau^{k} \xi) - sr(\tau^{k} \xi) \right]$$

$$= \left[d(\exp(A_{\#} - sr)) \right]^{-1},$$

where the product is over the periodic orbits γ for the flow, $x_{\gamma} \in \gamma$, and $l(\gamma)$ is the prime period of γ (Ruelle [8]); the functional d is defined by (1.4). The expressions (2.9) converge, and $\zeta_A(s)$ is analytic for Re $s > P^{\#}(A)$.

- **2.1. Theorem.** (a) (Pollicott [6]) ζ_A extends to a meromorphic function in $\{s: \operatorname{Re} s > P^{\#}(A) \delta\}$, where δ is determined by $P^{\#}(A_{\#} (P^{\#}(A) \delta)r) = \log \bar{\theta}^{-1}$. The poles of $\zeta_A(s)$ are located at the points s such that 1 is an eigenvalue of $\mathcal{L}'_{\Phi-s\Psi}$.
 - (b) (Ruelle [8]) ζ_A has a simple pole at $s = P^{\#}(A)$.
- (c) (Parry and Pollicott [5]) If (τ_{Θ}^{t}) is mixing, ζ_{A} has no pole on the line $\{s : \operatorname{Re} s = P^{\#}(A)\}$ apart from the pole at $s = P^{\#}(A)$.

By analogy with the proof of the prime number theorem one can, in view of (c), apply the Wiener-Ikehara Tauberian theorem to $\zeta_0(s)$ to study the distribution of the periods $l(\gamma)$ (Parry and Pollicott [5]).

It may be convenient to consider a functional defined with respect to the flow (τ_1^t) with unit speed. For $A \in \mathscr{C}(\Omega^{\#}, \mathbb{C})$, write

$$\mathscr{D}(A) = \prod_{\gamma} \left[1 - \exp \int_0^{l_1(\gamma)} A(\tau_1^t \chi_{\gamma}) dt \right] = d(\exp A_1),$$

where $A_1 = \int_0^1 A(\xi, u) du$, and $l_1(\gamma)$ is the (integer) period of γ with respect to (τ_1^I) . With this definition, $\zeta_A(s) = [\mathcal{D}((A-s)\Theta)]^{-1}$. The function $A \mapsto \mathcal{D}(A)^{-1}$ is holomorphic on $\mathscr{C}(\Omega^{\#}, \mathbb{C})$ when $P(\operatorname{Re} A_1) < 0$; the function $A \mapsto \mathcal{D}(A)$ is holomorphic on $\mathscr{C}_{\theta^{\#}}^{\#}$ when $P(\operatorname{Re} A_1 + \log \overline{\theta}) < 0$.

3. Gibbs distributions for the flow (τ_{Θ}^{t})

The concept of Gibbs distributions for a lattice system introduced in [9] was shown to be a natural extension of the concept of Gibbs state. If we want to study Axiom A flows rather than diffeomorphisms, we need another concept. The definition presented here is somewhat *ad hoc*, but appropriate for the discussion of correlation functions as we shall see later. It is in fact a natural *continuous time* version of the concept introduced earlier for discrete systems, but restricted to the simplest case (see Remark below).

For discrete systems, a space $\mathscr{G}_{\lambda\mu}$ of Gibbs distributions on Ω is defined as the span of elements of the form

$$\sigma'(d\xi')\sigma''(d\xi'')e^{-V_{\diamond}(\xi'\vee\xi'')}$$
.

In this formula, σ' , σ'' belong to the generalized eigenspaces to the eigenvalues λ , μ of operators $\mathscr{L}_{\Phi}^{\prime\prime*}$, $\mathscr{L}_{\Phi}^{\prime\prime*}$ acting on $\mathscr{C}_{\theta}^{*}((-\infty, 0])$ and $\mathscr{C}_{\theta}^{*}([1, \infty))$ respectively. The operator $\mathscr{L}_{\Phi}^{\prime\prime*}$ is the dual of $\mathscr{L}_{\Phi}^{\prime}$ defined by (1.3), and $\mathscr{L}_{\Phi}^{\prime\prime*}$ is defined analogously. We have written

$$(3.1) V_{\Phi}(\xi' \vee \xi'') = \sum_{l=0}^{\infty} \sum_{m=1}^{\infty} \Phi_{l+m}(\xi'_{-l}, \dots, \xi'_{0}, \xi''_{1}, \dots, \xi''_{m}).$$

Thus, all the ingredients of $\mathcal{G}_{\lambda\mu}$ are defined with respect to an interaction Φ , or equivalently a function A_{Φ} (see (1.1)). (Note that $A_{\Phi} \circ \tau^{-k}$ is, up to sign, the contribution to the *energy* of the *lattice site* k for the standard interpretation of the formalism we are describing.)

Our first step towards a definition of Gibbs distributions for continuous time systems will be to replace $A_{\Phi} \circ \tau^{-k}$ by different functions for $k \leq 0$ and $k \geq 1$. More precisely, we replace A_{Φ} by $A_{\#} - vr \circ \tau^{-1}$ for $k \leq 0$ and $A_{\#} - wr \circ \tau^{-1}$ for $k \geq 1$. (We start from real Θ , $A \in \mathscr{C}_{\theta}^{\sharp}$, with $\Theta > 0$, and r, $A_{\#}$ are defined by (2.4), (2.6). The complex numbers v, w will be specified in a minute.) Using the interactions Φ , Ψ defined by (1.1), (2.8) and the defintions (1.2), (1.3) we see that the operator \mathscr{L}' associated with $A_{\#} - vr \circ \tau^{-1}$ is $\mathscr{L}'_{\Phi - v\Psi}$ such that

$$\big(\mathscr{L}_{\Phi-\nu\Psi}' \phi \big) (\zeta') = \sum_{\eta \in J} t_{\xi_0 \eta} \big[\exp A'_{\Phi-\nu\Psi} \big(\tau \zeta' \vee \eta \big) \big] \phi \big(\tau \xi' \vee \eta \big).$$

There is an analogous definition for $\mathscr{L}''_{\Phi^-w\Psi}$. In the function V_{Φ} defined by (3.1) we replace Φ by $\Phi - w\Psi$ (not $\Phi - v\Psi$, the reason for this asymmetric choice is that the difference between $A_{\#} - vr \circ \tau^{-1}$ and $A_{\#} - wr \circ \tau^{-1}$, viz. $-(v - w)r \circ \tau^{-1}$, depends only on arguments ξ_k with $k \in (-\infty, 0]$).

The numbers v, w are specified by the condition that 1 be an eigenvalue of $\mathscr{L}'_{\Phi-v\Psi}$ and $\mathscr{L}''_{\Phi-w\Psi}$, and that

$$(3.2) P^{\#}(A) - \delta < \operatorname{Re} v, \operatorname{Re} w,$$

where δ is determined by Theorem 2.1(a). (We have also automatically Re v, Re $w \leq P^{\#}(A)$.)

⁴ Equivalently, we might use $(A_{\#} - vr) \circ \tau^{-1}$ for $k \le 0$ and $(A_{\#} - wr) \circ \tau^{-1}$ for $k \ge 1$; the final definitions would not change.

Let $F_{v}^{\prime *}$ and $F_{w}^{\prime \prime *}$ be the eigenspaces to the eigenvalue 1 of $\mathcal{L}_{\Phi - v \Psi}^{\prime *}$ and $\mathcal{L}_{\Phi - w \Psi}^{\prime \prime *}$. (Note: the strict, *not* the generalized eigenspaces.) We let \mathcal{F}_{vw} be the finite dimensional subspace of \mathcal{C}_{θ}^{*} generated by the elements

(3.3)
$$\sigma_{\#}(d\xi' \vee d\xi'') = \sigma'_{(v)}(d\xi')\sigma''_{(w)}(d\zeta'')e^{-V_{\Phi-v\Psi}(\xi'\vee\xi'')},$$

where $\sigma'_{(v)} \in F_{v}^{\prime*}$, $\sigma''_{(w)} \in F''_{w}$. (It is not hard to see that $F''_{v} \otimes F'''_{w} \mapsto \mathscr{F}_{vw}$ is bijective.)

The restriction of $\mathcal{L}'^*_{\Phi^-\nu\Psi}$ to F'^*_{ν} is the identity operator; similarly for the restriction of $\mathcal{L}''^*_{\Phi^-\nu\Psi}$ to F''^*_{ν} . Using (3.3), it is now readily checked that

$$(\tau \sigma_{\#}) (d\xi' \vee d\xi'') = \sigma'_{(v)} (d\xi') \sigma''_{(w)} (d\xi'')$$

$$\cdot \exp[(v - w)\tilde{r}(\xi') - V_{\Phi - w\Psi} (\xi \vee \xi'')]$$

so that, for all $\sigma_{\#} \in \mathscr{F}_{\nu_{\#}}$,

(3.4)
$$\tau \sigma_{\#} = \exp\left[(v - w)r \circ \tau^{-1}\right] \cdot \sigma_{\#},$$

or equivalently

$$\tau^{-1}\sigma_{\pm} = \exp[-(v-w)r] \cdot \sigma_{\pm}.$$

Define now $\sigma^{\#} \in \mathscr{C}_{\theta}^{\#*}$ by

(3.5)
$$\sigma_{\#}(d\xi du) = \sigma_{\#}(d\zeta) \cdot \exp[-(v-w)t(\xi,u)] \cdot \Theta(\xi,u) du$$
$$= \sigma_{\#}(d\xi) \cdot \exp[-(v-w)t] dt,$$

where $t = t(\xi, u)$ is the inverse of the function $t \mapsto u(t)$ such that $du/dt = \Theta(\xi, u)^{-1}$ and u(0) = 0, i.e., $t(\xi, u) = \int_0^u d\alpha \Theta(\xi, \alpha)$. (Note that $t(\xi, 1) = r(\xi)$ and that $||t||_{\theta}^{\#} \le |||\Theta||_{\theta}^{\#}$ in view of (2.1).) We define the space $\mathscr{F}_{vw}^{\#}$ of Gibbs distributions to consist of the $\sigma^{\#}$ constructed above.

Writing $(\tau_{\Theta}^t \sigma^{\#})(A) = \sigma^{\#}(A \circ \tau_{\Theta}^t)$ we find that

$$\frac{d}{dt}\tau_{\Theta}^t\sigma^\# = (v-w)\sigma^\#$$

for $\sigma^{\#} \in \mathscr{F}_{\nu w}^{\#}$, hence

$$\tau_{\Theta}^t \sigma^{\#} = \sigma^{\#} \cdot e^{(v-w)t}.$$

Returning to the space \mathscr{F}_{vw} , we note that the projection $\pi_{(-\infty,0]}\mathscr{F}_{vw}$ is readily characterized. We have indeed, from (3.3)

(3.6)
$$(\pi_{(-\infty,0]}\sigma_{\#})(d\xi') = S'_{(w)}(\xi')\sigma'_{(v)}(d\xi'),$$

where

$$S_{(w)}^{\prime}\big(\xi^{\prime}\big) = \int \, \sigma_{(w)}^{\prime\prime}\big(\,d\xi^{\prime\prime}\big) {\rm exp}\big[-V_{\Phi-w\Psi}\big(\xi^{\prime}\vee\xi^{\prime\prime}\big)\big]\,. \label{eq:Sweak_exp}$$

It is known (see [9]) that the functions $S'_{(w)}$ of this form (with $\sigma''_{(w)} \in F''_{w}$) constitute precisely the eigenspace F'_{w} to the eigenvalue 1 of the operator $\mathscr{L}'_{\Phi-w\Psi}$ acting on $\mathscr{C}_{\theta}(-\infty, 0]$. Thus $\pi_{(-\infty,0]}\mathscr{F}_{vw}$ is spanned by $F'_{w}F'_{v}$. Note that we also have

$$\pi_{(-\infty,0]}\tau\sigma_{\#} = \exp[(v-w)\tilde{r}] \cdot \pi_{(-\infty,0]}\sigma_{\#}.$$

Example. Since $P(A_{\#} - P^{\#}(A)r) = 0$ (§2), the operator $\mathcal{L}_{\Phi - P^{\#}(A)\Psi}$ has 1 as simple eigenvalue (see §1). Writing $P^{\#}(A) = P$, we see that \mathcal{F}_{PP} is one-dimensional spanned by the Gibbs state $\sigma^{\#}$ on Ω for $A_{\#} - P^{\#}(A)r$. The space $\mathcal{F}_{PP}^{\#}$ is thus spanned by the Gibbs state ρ^{\times} on $\Omega^{\#}$ for A, and ρ^{\times} is therefore also a Gibbs distribution.

Remark. To avoid technical problems we have adopted a definition of Gibbs distributions which uses the *strict* eigenspaces of $\mathcal{L}_{v}^{\prime\prime\ast}$, $\mathcal{L}_{w}^{\prime\prime\prime\ast}$. (This is no restriction as long as we consider simple eigenvalues.) The parallel study in [9] was based on a more comprehensive definition, using generalized eigenspaces. As a consequence we could identify in [9] all the coefficients of the poles of the Fourier transform of correlation functions. Here we identify the residues in terms of Gibbs distributions for the important case of simple poles. A more general analysis would of course be desirable.

Example. Let r be a constant function, say r = T. Then $\mathscr{L}'_{\Phi - \nu \Psi} = e^{-\nu T} \mathscr{L}'_{\Phi}$, $\mathscr{L}''_{\Phi - \nu \Psi} = e^{-\nu T} \mathscr{L}''_{\Phi}$. The eigenvalues and eigenvectors are thus readily determined. In particular, 1 is an eigenvalue of $\mathscr{L}'_{\Phi - \nu \Psi}$ if $\lambda \notin e^{-\nu T} = 1$, where λ is an eigenvalue of \mathscr{L}'_{Φ} .

This gives

$$v = \frac{1}{T}(\log \lambda + 2k\pi i),$$

where the multivaluedness of the log has been made explicit. Writing similarly

$$w = \frac{1}{T} (\log \mu + 2k'\pi i)$$

we may identify $\sigma^{\#} \in \mathscr{F}_{vw}$ with an element of the space $\mathscr{G}_{\lambda\mu}$ of Gibbs distributions defined in [9]. The corresponding $\sigma^{\#} \in \mathscr{F}_{vw}^{\#}$ is given by

$$\sigma^{\#}(d\xi du) = \sigma^{\#}(d\xi) \exp\left[-(\log \lambda - \log \mu + 2(k - k')\pi i)\frac{t}{T}\right] dt$$

and we have

$$\tau_{\Theta}^{t} \sigma^{\#} = \sigma^{\#} \exp(\log \lambda - \log \mu + 2(k - k')\pi i) \frac{t}{T}.$$

Notice that $\mathscr{F}_{v'w'}^{\#} = \mathscr{F}_{vw}^{\#}$ when $v' - v = w' - w = l \cdot 2\pi i/T$, l an integer.

4. Correlation functions for the flow (τ_{Θ}^t)

We consider the suspended flow for a fixed speed function $\Theta^{-1} \in \mathscr{C}_{\theta^2}^{\#}$, and let ρ^{\times} be the Gibbs state corresponding to the real function $A \in \mathscr{C}_{\theta^2}^{\#}$. If $B, C \in \mathscr{C}_{\theta}^{\#}$ we define

$$\rho_{BC}^{\times}(t) = \rho^{\times}((B \circ \tau_{\Theta}^{t}) \cdot C) - \rho^{\times}(B)\rho^{\times}(C)$$

and its Fourier transform

$$\hat{\rho}_{BC}^{\times}(\omega) = \int_{-\infty}^{\infty} e^{i\omega t} dt \rho_{BC}^{\times}(t)$$

which has to be understood as a tempered distribution. We may express ρ^{\times} in terms of the Gibbs state ρ for $A_{\#}$ on Ω (see (2.2), (2.3)). We write

$$(4.1) v^{-1} = \int \rho(d\xi) \int \Theta(\xi, u) du = \int r(\xi) \rho(d\xi)$$

and

$$B' = B - \rho^{\times}(B), \qquad C' = C - \rho^{\times}(C).$$

The following manipulations then yield a correct result in the sense of distributions

$$\hat{\rho}_{BC}^{\times}(\omega) = \int_{-\infty}^{\infty} e^{i\omega t} dt \rho^{\times} ((B' \circ \tau_{\Theta}^{t})C')$$

$$= \nu \int_{-\infty}^{\infty} e^{i\omega t} dt \int_{\Omega} \rho(d\xi) \int_{0}^{1} \Theta(\xi, u) du B'(\tau_{\Theta}^{t}(\xi, u))C'(\xi, u)$$

$$= \nu \int_{-\infty}^{\infty} e^{i\omega t} dt \int_{0}^{\infty} \rho(d\xi) \int_{0}^{r(\xi)} dt' B'(\tau_{\Theta}^{t+t'}(\xi, 0))C'(\tau_{\Theta}^{t'}(\xi, 0))$$

$$= \nu \int_{0}^{\infty} \rho(d\xi) \int_{-\infty}^{\infty} e^{i\omega t''} dt'' B'(\tau_{\Theta}^{t''}(\xi, 0)) \int_{0}^{r(\xi)} e^{-i\omega t'} C'(\tau_{\Theta}^{t'}(\xi, 0))$$

$$= \nu \int_{0}^{\infty} \rho(d\xi) \sum_{j=-\infty}^{\infty} \int_{0}^{r(\tau^{j}\xi)} dt \exp i\omega \left(\sum_{k=0}^{j-1} r(\tau^{k}\xi) + t\right) B'(\tau_{\Theta}^{t}(\tau^{j}\xi, 0))$$

$$\cdot \int_{0}^{r(\xi)} e^{-i\omega t'} dt' C(\tau_{\Theta}^{t'}(\xi, 0))$$

$$= \nu \int_{0}^{\infty} \rho(d\xi) \sum_{j=-\infty}^{\infty} \exp i\omega \sum_{k=0}^{j-1} r(\tau^{k}\xi) \cdot \hat{B}(\tau^{j}\xi, \omega) \hat{C}(\xi, -\omega),$$

where

(4.3)
$$\hat{B}(\xi,\omega) = \int_0^{r(\xi)} e^{i\omega t} dt B'(\tau_{\Theta}^t(\xi,0))$$

$$= \int_0^1 du \Theta(\xi,u) B'(\xi,u) \exp i\omega t(\xi,u),$$

$$t(\xi,u) = \int_0^u d\alpha \Theta(\xi,\alpha).$$

The definition of \hat{C} is similar.

Note that, for each $n \ge 0$, $|\partial^n \hat{B}/\partial \omega^n|$, $|\partial^n \hat{C}/\partial \omega^n|$ are bounded uniformly with respect to ω and ξ . Using furthermore the fact that min r > 0, we see that the right-hand side of (4.2) converges in Schwartz' space $\mathscr{S}'(\mathbb{R})$ of temperate distributions (with respect to ω) and thus also in the space $\mathscr{D}'(\mathbb{R})$ of all distributions. We shall next represent \hat{B} , \hat{C} as series which converge uniformly on compacts, as well as their derivatives:

(4.5)
$$\hat{B} = X_0 + X_1 e^{i\omega r} + X_2 e^{i\omega(r+r \circ \tau)} + \dots + X_m e^{i\omega(r+\dots+r \circ \tau^{m-1})} + \dots,$$

$$\hat{C} = Y_0 + Y_1 e^{-i\omega r} + Y_2 e^{-i\omega(r+r \circ \tau)} + \dots + Y_n e^{-i\omega(r+\dots+r \circ \tau^{n-1})} + \dots.$$

We define successively $B_0 = \hat{B}$, X_0 , B_1 , X_1 , \cdots as follows:

(a) Treating ω as a parameter, which we now allow to be complex, we extract X_m as the part of B_m depending only on ξ_{-m}, \dots, ξ_m . This extraction is not unique, but can be achieved linearly, so that

$$(4.6) \quad \text{var}_{m+1} X_m = 0, \quad \|X_m\|_{\infty} \leqslant \|B_m\|_{\infty}, \quad \|B_m - X_m\|_{\infty} \leqslant \text{var}_{m+1} B_m.$$

(b) We define

$$(4.7) B_{m+1} = (B_m - X_m)e^{-i\omega_r \circ \tau^m}$$

We may assume that

(4.8)
$$\begin{aligned} \operatorname{var}_{k} \hat{B} &\leq K \theta^{k}, \quad \|\hat{B}\|_{\infty} \leq K, \\ \operatorname{var}_{k} r &\leq L \theta^{k} \quad \text{for } k \geq 1. \end{aligned}$$

(K depends on ω , but is uniformly bounded on compacts; from (4.3) and (4.4) we see that we may take $K = \|\|\Theta\|\|_{\theta}^{\#} \|\|B'\|\|_{0}^{\#} \exp(\|\omega\|\|\Theta\|\|_{0}^{\#})$. We also have $L = \|r\|_{\theta} \leq \|\|\Theta\|\|_{\theta}^{\#}$.) Note that by construction we have

$$(4.9) \operatorname{var}_{k}(B_{m} - X_{m}) \leq \operatorname{var}_{k} B_{m} \text{for } k > m.$$

In view of (4.6), (4.7), (4.8), (4.9), we obtain

$$\operatorname{var}_k B_m \leqslant K_m \theta^k \quad \text{for } k \geqslant m$$

provided the K_m satisfy $K_0 \ge K$ and

$$K_{m+1} \geqslant E(K_m + K_m | \omega | L\theta^{2m+1})$$

with

$$E = \begin{cases} \exp(\operatorname{Im} \omega \cdot \max r) & \text{for Im } \omega \geqslant 0, \\ \exp(\operatorname{Im} \omega \cdot \min r) & \text{for Im } \omega \leqslant 0. \end{cases}$$

We take

$$K_m = \overline{K}E^m$$
, $\overline{K} = K \prod_{k=0}^{\infty} (1 + L|\omega|\theta^{2k+1})$.

Thus

$$\operatorname{var}_k B_m \leqslant \overline{K} E^m \theta^k \quad \text{for } k \geqslant m,$$

$$||B_m - X_m||_{\infty} \le \overline{K}E^m\theta^{m+1}, \qquad ||X_m||_{\infty} \le ||B_m||_{\infty} \le \overline{K}E^m\theta^m.$$

Similar estimates hold for the derivatives of the X_m with respect to ω . Therefore for ω real, and thus E=1, the series (4.5) for \hat{B} , and the differentiated series converge exponentially fast on compact sets. In the sense of convergence in $\mathscr{D}'(\mathbb{R})$ we therefore have

$$\hat{
ho}_{BC}^{\times}(\omega)$$

$$= \nu \int \rho(d\xi) \sum_{j=-\infty}^{\infty} \exp i\omega \sum_{k=0}^{j-1} r(\tau^{k}\xi)$$

$$\cdot \sum_{m=0}^{\infty} X_{m}(\tau^{j}\xi, \omega) \exp i\omega (r(\tau^{j}\xi) + \cdots + r(\tau^{j+m-1}\xi))$$

$$\cdot \sum_{n=0}^{\infty} Y_{n}(\xi, -\omega) \exp - i\omega (r(\xi) + \cdots + r(r^{n-1}\xi))$$

$$= \nu \int \rho(d\xi) \sum_{m,n} \sum_{j=-\infty}^{\infty} X_{m}(\tau^{j}\xi, \omega) Y_{n}(\xi, -\omega) \exp i\omega \sum_{k=n}^{j+m-1} r(\tau^{k}\xi)$$

$$= \nu \int \rho(d\xi) \sum_{m,n} \sum_{j=-\infty}^{\infty} X_{m}(\tau^{j-n}\xi, \omega) Y_{n}(\tau^{-n}\xi, -\omega) \exp i\omega \sum_{k=0}^{j+m-n-1} r(\tau^{k}\xi)$$

$$= \nu \int \rho(d\xi) \sum_{m,n} \sum_{j=-\infty}^{\infty} X_{m}(\tau^{j-m}\xi, \omega) Y_{n}(\tau^{-n}\xi, -\omega) \exp i\omega \sum_{k=0}^{j-1} r(\tau^{k}\xi)$$

$$= \nu \int \rho(d\xi) \sum_{m,n} \sum_{j=-\infty}^{\infty} X_{m}(\tau^{j-m}\xi, \omega) Y_{n}(\tau^{-n}\xi, -\omega) \exp i\omega \sum_{k=0}^{j-1} r(\tau^{k}\xi)$$

$$= \nu \int \rho(d\xi) \left[\sum_{l=0}^{\infty} \left(\exp - i\omega \sum_{k=1}^{l} r(\tau^{-k}\xi) \right) B''(\tau^{-l}\xi, \omega) C''(\xi, -\omega) \right]$$

$$+ \sum_{l=0}^{\infty} \left(\exp i\omega \sum_{k=1}^{l} r(\tau^{-k}\xi) \right) B''(\xi, \omega) C''(\tau^{-l}\xi, -\omega)$$

$$- B''(\xi, \omega) C''(\xi, -\omega) \right],$$

where

(4.10)
$$B''(\xi,\omega) = \sum_{m=0}^{\infty} X_m(\tau^{-m}\xi,\omega),$$
$$C''(\xi,-\omega) = \sum_{n=0}^{\infty} Y_n(\tau^{-n}\xi,-\omega).$$

We may write $\tilde{\rho} = \pi_{(-\infty,0]}\rho$, and

$$(4.11) r \circ \tau^{-1} = \tilde{r} \circ \pi_{(-\infty,0]}, \tau' = \pi_{(-\infty,0]} \tau^{-1},$$

$$B''(\xi,\omega) = \tilde{B}_{\omega} \circ \pi_{(-\infty,0]} \xi,$$

$$C''(\xi,\omega) = \tilde{C}_{-\omega} \circ \pi_{(-\infty,0]} \xi$$

so that

$$\hat{\rho}_{BC}^{\times}(\omega) = \nu \int \tilde{\rho}(d\xi') \left[\sum_{l=0}^{\infty} \left(\exp i\omega \sum_{k=0}^{l-1} \tilde{r}(\tau'^{k}\xi') \right) \tilde{B}_{\omega}(\tau'^{l}\xi') \tilde{C}_{-\omega}(\xi') \right. \\ + \sum_{l=0}^{\infty} \left(\exp i\omega \sum_{k=0}^{l-1} \tilde{r}(\tau'^{k}\xi') \right) \tilde{B}_{\omega}(\xi') \tilde{C}_{-\omega}(\tau'^{l}\xi') \\ \left. - \tilde{B}_{\omega}(\xi') \tilde{C}_{-\omega}(\xi') \right].$$

We have (see (3.6))

$$\tilde{\rho}(d\xi') = S'_{(P)}(\xi')\sigma'_{(P)}(d\xi'),$$

where $P = P^{\#}(A)$ and $S'_{(P)}$ and $\sigma'_{(P)}$ are the eigenvectors corresponding to the eigenvalue 1 of the operators $\mathscr{L}'_{\Phi-P\Psi}$, $\mathscr{L}'^*_{\Phi-P\Psi}$ acting on $\mathscr{C}_{\theta}(-\infty, 0]$, $\mathscr{C}'^*_{\theta}(-\infty, 0]$. (These eigenvectors are unique up to normalization.) Thus

$$\hat{\rho}_{BC}^{\times}(\omega) = \nu \sigma_{(P)}^{\prime} \left[\tilde{B}_{\omega} \sum_{l=0}^{\infty} \mathcal{L}_{\Phi-(P+i\omega)\Psi}^{\prime l} \left(S_{(P)}^{\prime} C_{-\omega} \right) \right.$$

$$\left. + \tilde{C}_{-\omega} \sum_{l=0}^{\infty} \mathcal{L}_{\Phi-(P-i\omega)\Psi}^{\prime l} \left(S_{(P)}^{\prime} \tilde{B}_{\omega} \right) \right] - \nu \tilde{\rho} \left(\tilde{B}_{\omega} \tilde{C}_{-\omega} \right)$$

$$(4.12) \qquad = \nu \tilde{\rho} \left[\tilde{B}_{\omega} \left(1 - S_{(P)}^{\prime - 1} \mathcal{L}_{\Phi-(P+i\omega)\Psi}^{\prime} S_{(P)}^{\prime} \right)^{-1} \tilde{C}_{-\omega} \right]$$

$$\left. + \nu \tilde{\rho} \left[\tilde{C}_{-\omega} \left(1 - S_{(P)}^{\prime - 1} \mathcal{L}_{\Phi-(P-i\omega)\Psi}^{\prime} S_{(P)}^{\prime} \right)^{-1} \tilde{B}_{\omega} \right] - \nu \tilde{\rho} \left(\tilde{B}_{\omega} \tilde{C}_{\omega} \right) \right.$$

$$\left. = \nu \tilde{\rho} \left[\tilde{B}_{\omega} \left(\left(1 - S_{(P)}^{\prime - 1} \mathcal{L}_{\Phi-(P+i\omega)\Psi}^{\prime} S_{(P)}^{\prime} \right)^{-1} - \frac{1}{2} \right) \tilde{C}_{-\omega} \right] \right.$$

$$\left. + \nu \tilde{\rho} \left[\tilde{C}_{-\omega} \left(\left(1 - S_{(P)}^{\prime - 1} \mathcal{L}_{\Phi-(P-i\omega)\Psi}^{\prime} S_{(P)}^{\prime} \right)^{-1} - \frac{1}{2} \right) \tilde{B}_{\omega} \right].$$

Note that the two terms in the right-hand side are permuted by the interchange of B and C, and the replacement of ω by $-\omega$.

4.1. Theorem. If $B, C \in \mathscr{C}_{\theta}^{\#}$, the function $\hat{\rho}_{BC}^{\times}$ extends to a meromorphic function in the strip

$$|\operatorname{Im}\omega| < \delta^*,$$

where

$$\delta^* = \frac{|\log \theta|}{2 \max r - \min r}.$$

If we also have $|\operatorname{Im} \omega| < \delta$, we may write

(4.14)
$$\hat{\rho}_{BC}^{\times}(\omega) = \frac{N_{BC}(\omega)}{d(\exp(A_{\#} - (P^{\#}(A) + i\omega)r))} + \frac{N_{CB}(-\omega)}{d(\exp(A_{\#} - (P^{\#}(A) - i\omega)r))},$$

where N_{BC} is holomorphic in (4.13) and d is as in (1.4).

Note that, in view of (2.9), we may rewrite (4.14) as

$$\hat{\rho}_{BC}^{\times}(\omega) = N_{BC}(\omega)\xi(P^{\#}(A) + i\omega) + N_{CB}(-\omega)\zeta(P^{\#}(A) - i\omega).$$

The position of the poles of $\hat{\rho}_{BC}^{\times}$ is thus simply related to that of the poles of ζ . (They are of the form $\pm i(P^{\#}(A) - s)$, where s is such that 1 is an eigenvalue of $\mathcal{L}_{\Phi-s\Psi}^{*}$.)

A partial proof of the above proposition has been obtained earlier by Pollicott [7].

Let $\theta < \theta^* < 1$; then $\omega \mapsto \tilde{B}_{\omega}$ is holomorphic with values in $\mathscr{C}_{\theta^*}(-\infty, 0]$ in the region defined by $\theta^{*-1}E\theta < 1$, i.e.,

$$2|\log \theta^*| < \begin{cases} |\log \theta| - \operatorname{Im} \omega \cdot \max r & \text{if } \operatorname{Im} \omega \geq 0, \\ |\log \theta| - \operatorname{Im} \omega \cdot \min r & \text{if } \operatorname{Im} \omega \leq 0. \end{cases}$$

On the other hand, $(1 - S_{(P)}^{\prime-1} \mathcal{L}_{\Phi-(P-i\omega)}^{\prime} S_{(P)}^{\prime})^{-1}$ is meromorphic as an operator on $\mathcal{L}_{\theta^*}(-\infty, 0]$ provided

$$\theta^* \exp P(\operatorname{Re}(A_\# - (P^\#(A) - i\omega)r)) < 1,$$

i.e.,

$$P(A_{\#} - (P^{\#}(A) + \operatorname{Im}\omega)r) < |\log \theta^*|.$$

Since $P(A_{\#} - P^{\#}(A)r) = 0$, this condition is implied by

$$-\operatorname{Im}\omega\cdot\operatorname{max}r<|\log\theta^*|.$$

Therefore $\omega \mapsto (1 - S_{(P)}^{\prime -1} \mathscr{L}_{\Phi^{-}(P-i\omega)\Psi}^{\prime} S_{(P)}^{\prime})^{-1} \tilde{B}_{\omega}$ is meromorphic if

$$-\frac{|\log \theta|}{2\max r - \min r} < \frac{|\log \theta|}{\max r}$$

and $\omega \to \tilde{\rho}[\tilde{C}_{-\omega}(1 - S_{(P)}^{\prime -1}\mathcal{L}_{\Phi-(P-i\omega)\Psi}^{\prime}S_{(P)}^{\prime})^{-1}\tilde{B}_{\omega}]$ is also meromorphic. Interchanging B and C, we obtain from (4.12) the meromorphy of $\hat{\rho}_{BC}^{\#}$ in (4.13).

If $|\text{Im }\omega| < \delta$, we may also write

$$\left(1 - S_{(P)}^{\prime - 1} \mathcal{L}_{\Phi - (P - i\omega)\Psi}^{\prime} S_{(P)}^{\prime}\right)^{-1} = \frac{\mathcal{N}}{d\left(\exp\left(A_{\#} - \left(P^{\#}(A) - i\omega\right)r\right)\right)},$$

where the numerator is holomorphic in (4.15) (see [9, Proposition 3.3]); from this (4.14) follows readily.

4.2. Theorem. Suppose that 1 is a simple eigenvalue of $\mathscr{L}'_{\Phi-s\Psi}$. There is thus a simple eigenvalue $\lambda(z)$ of $\mathscr{L}'_{\Phi-z\Psi}$ depending analytically on z for z close to s. Assume that the derivative $\lambda(s) \neq 0$. Then $\hat{\rho}_{BC}^{\times}$ has simple poles at $\pm i(P^{\#}(A) - s)$. Their residues are

$$\frac{i}{K}\sigma_{Ps}^{\#}(B)\sigma_{sP}^{\#}(C)$$
 and $-\frac{i}{K}\sigma_{Ps}^{\#}(C)\sigma_{sP}^{\#}(B)$

respectively, with $\sigma_{Ps}^{\#} \in \mathscr{F}_{Ps}^{\#}$, $\sigma_{sP}^{\#} \in \mathscr{F}_{sP}^{\#}$, and K a constant.

(The normalization of $\sigma_{Ps}^{\#}$, $\sigma_{sP}^{\#}$, and the value of K are discussed in the Remark to follow).

The two poles come from the two terms in the right-hand side of (4.12). It suffices to discuss the first term, which we rewrite

$$\nu\sigma_{(P)}'\Big[\tilde{B}_{\omega}\Big(\Big(1-\mathcal{L}_{\Phi-(P+i\omega)\Psi}'\Big)^{-1}-\tfrac{1}{2}\Big)S_{(P)}'\tilde{C}_{-\omega}\Big].$$

Up to a contribution regular at $i(P^{\#}(A) - s)$ this is

$$\nu\sigma'_{(P)}\left(\tilde{B}_{\omega}S'_{(s)}\right)\frac{1}{1-\lambda\left(P^{\#}(A)+i\omega\right)}\sigma'_{(s)}\left(S'_{(P)}\tilde{C}_{-\omega}\right)$$

or, again up to a regular contribution,

$$\nu \sigma_{(P)}' \Big(S_{(s)}' \tilde{B}_{i(P^{\#}(A)-s)} \Big) \sigma_{(s)}' \Big(S_{(P)}' \tilde{C}_{-i(P^{\#}(A)-s)} \Big) \Big(\lambda'(s) \big(s - P^{\#}(A) - i\omega \big) \Big)^{-1}$$

$$= \frac{\nu \sigma_{Ps} \Big(B'' \big(\cdot, i \big(P^{\#}(A) - s \big) \big) \Big) \sigma_{sP} \Big(C'' \big(\cdot, -i \big(P^{\#}(A) - s \big) \big) \Big)}{\lambda'(s) \big(s - P^{\#}(A) - i\omega \big)},$$

where we have used (3.6), (4.11), and $\sigma_{Ps} \in \mathscr{F}_{Ps}$, $\sigma_{sP} \in \mathscr{F}_{sP}$. We have, using successively (4.10), (3.4), (4.5), (4.3), and (3.5),

$$\sigma_{P_{S}}(B''(\cdot, i(P^{\#}(A) - s)))$$

$$= \sigma_{P_{S}}\left(\sum_{m=0}^{\infty} X_{m}(\tau^{-m} \cdot, i(P^{\#}(A) - s))\right)$$

$$(4.17) = \sum_{m=0}^{\infty} (\tau^{-m}\sigma_{P_{S}})[X_{m}(\cdot, i(P^{\#}(A) - s))]$$

$$= \sigma_{P_{S}}\left[\sum_{m=0}^{\infty} X_{m}(\cdot, i(P^{\#}(A) - s))\exp\left(-(P^{\#}(A) - s)\sum_{k=0}^{m-1} r \circ \tau^{k}(\cdot)\right)\right]$$

$$= \sigma_{P_{S}}[\hat{B}(\cdot, i(P^{\#}(A) - s))] = \sigma_{P_{S}}^{\#}(B') = \sigma_{P_{S}}^{\#}(B)$$

with $\sigma_{P_s}^{\#} \in \mathscr{F}_{P_s}^{\#}$. Similarly

(4.18)
$$\sigma_{sP}(C''(\cdot, -i(P^{\#}(A) - s))) = \sigma_{sP}^{\#}(C)$$

with $\sigma_{sP}^{\#} \in \mathscr{F}_{sP}^{\#}$. Inserting (4.17) and (4.18) in (4.16), we obtain

$$i\nu\lambda'(s)^{-1}\sigma_{Ps}^{\#}(B)\sigma_{sP}^{\#}(C)(\omega-i(P^{\#}(A)-s))^{-1}$$

which is the form of the residue announced in the theorem, with $K = \nu^{-1} \lambda'(s)$.

Remark. The product $\sigma_{Ps}^{\#}(B)\sigma_{sP}^{\#}(C)$ is unambiguously normalized in view of the formulas

$$\sigma_{Ps}^{\#}(d\xi du) = \sigma_{Ps}(d\xi) \exp[-(P-s)t] dt,$$

$$\sigma_{sP}^{\#}(d\xi du) = \sigma_{sP}(d\xi) \exp[(P-s)t] dt,$$

$$(\pi_{(-\infty,0]}\sigma_{Ps})(d\xi') = S'_{(s)}(\xi')\sigma'_{(P)}(d\xi'),$$

$$(\pi_{(-\infty,0]}\sigma_{sP})(d\xi') = S'_{(P)}(\xi')\sigma'_{(s)}(d\xi'),$$

$$\sigma'_{(P)}(S'_{(P)}) = 1, \qquad \sigma'_{(s)}(S'_{(s)}) = 1.$$

The constant K is given by

(4.19)
$$K = \nu^{-1} \lambda'(s) = \left[\int \sigma_{PP}(d\xi) r(\xi) \right] \left[\int \sigma_{ss}(d\xi) r(\xi) \right],$$

where σ_{PP} is the Gibbs state $\rho \in \mathscr{F}_{PP}$ and $\sigma_{ss} \in \mathscr{F}_{ss}$, with

$$(\pi_{(-\infty,0]}\sigma_{PP})(d\xi') = S'_{(P)}(\xi')\sigma'_{(P)}(d\xi'),$$

$$(\pi_{(-\infty,0]}\sigma_{ss})(d\xi') = S'_{(s)}(\xi')\sigma'_{(s)}(d\xi').$$

We obtained (4.19) from (4.1), and formula (3.2) of [9]. Note that $K \neq 0$ by one of the assumptions of Theorem 4.2.

References

- [1] R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972) 1-30.
- [2] _____, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973) 429-460.
- [3] ______, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math., No. 470, Springer, Berlin, 1975.
- [4] R. Bowen & D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975)
- [5] W. Parry & M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. 118 (1982) 573-591.
- [6] M. Pollicott, Meromorphic extensions of generalized zeta functions, preprint.
- [7] _____, On the rate of mixing of Axiom A flows, Invent. Math. 81 (1985) 413-426.
- [8] D. Ruelle, Thermodynamic formalism, Encyclopedia of Math. and its Appl., Vol. 5, Addison-Wesley, Reading, MA, 1978.
- [9] _____, One-dimensional Gibbs states and Axiom A diffeomorphisms, J. Differential Geometry 25 (1987) 117-137.
- [10] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967) 747-817.

RUTGERS UNIVERSITY INSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES